Rappe

L'interprétation orthodoxe de la Physique Quantique implique que le carré de la fonction d’onde exprime la
densité de probabilité par unité de volume, de trouver la particule a chaque endroit de I'espace.

dP(x) = [{(z)|*dz

Une mesure de la position de la particule sera donc caractérisée en général par une incertitude.

L'interprétation correcte de I'incertitude est la suivante: un systeme est préparé dans un état y)(z)donné. On
mesure la position de la particule et on obtient une certaine valeur x;. On prépare un autre systeme dans le
méme état 1)(x) . Une nouvelle mesure de la position donnera en une valeur x, qui est en général différente
de x
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Cette incertitude n’est pas due au manque de précision de I'expérimentateur ou de I'instrument de mesure.
Elle est une caractéristique intrinseque de I'état du systeme selon les lois de la Physique Quantique.

Chaque état est caractérisé par sa propre distribution de probabilité |1D($)\2et donc par sa propre incertitude.

En particulier, 'onde plaine de de Broglie et la fonction d’'onde de type «delta» de Dirac, sont les deux cas
limite. lls ont respectivement incertitude infinie et zéro.



Rappe

La mesure de toute quantité physique, et pas seulement celle de la position, est caractérisée par une
incertitude.

En particulier, la mesure de I'impulsion (ou quantité de mouvement) est caractérisée par une incertitude Ap

Le principe d’incertitude de Heisenberg affirme que, quoiqu’elle soit la fonction d’onde 1)(x) qui décrit I'état
de la particule, les deux incertitudes sur la position et sur I'impulsion doivent satisfaire I'inégalité

AzAp > g

Quoigu’il soit I'état de la particule, il est donc impossible de connaitre sa position et son impulsion
simultanément avec précision arbitraire.

Le principe d’incertitude de Heisenberg est un cas spécial du principe de complémentarité de Bohr.



Cours 06

La particule dans un puits avec barrieres impénétrables

L'équation de Schrodinger



La particule dans un puits de potentiel infini

On considere une particule confinée dans une région de

'espace qui va de x=0 a x=L. On peut s’imaginer que ce }4 L >
confinement est produit par deux barriéres impénétrables. Ces
barrieres sont décrites mathématiquement par un puits de
potentiel avec barrieres de hauteur infinie. N
u

Dans la région du puits la particule se comporte comme une nm@———>_-
particule libre. Si c’était une particule classique, elle pourrait
avoir une vitesse arbitraire.
En physique quantique, le mouvement a l'intérieur du puits
serait donc décrit par 'onde de de Broglie

o0 0

Y(x) =Mk =p/h
La phase ¢ arbitraire permet d’exprimer la fct donde comme

Y(x) = Asin(kz) + B cos(kx)

On trouvera ce résultat par la suite en résolvant I'équation de
Schrédinger. 0 I3



La particule dans un puits de potentiel infini

Comment choisi-t-on A et B? Si les barrieres sont impénétrables, il faut que la probabilité de trouver la
particule a 'extérieur du puits soit zéro. La fonction d’onde doit donc étre zéro pour x<0 et x>L.

La fonction d’onde en Physique Quantique doit étre continue. C’est une propriété qui découle de I'équation
de Schrodinger qu’on verra par la suite. Il faut donc que la fonction d’onde s’annule aussi en x=0 et x=L. On
en déduit qu’il faut poser B=0. On a donc

Y(x) = Asin(kx) k=p/h=21/)\

Pour la méme raison, la fonction d’'onde doit s’annuler aussi en x=L. Ceci n’est possible que pour des valeurs
discretes de la longueur d’'onde de de Broglie A. La condition sur la longueur d’'onde est

2L
—=nm n=1,23,...

A ? ? ?

Les fonctions d’onde des différents états possibles sont donc (aprés avoir calculé la norme)
b () A (RWI)
r) = — Sl | —
n
L L



La particule dans un puits de potentiel infini

Dans la figure, pour chaque valeur de n la fonction est dessinée déplacée vers le haut, pour pouvoir les
distinguer. A droite on a la densité de probabilité correspondante.

On remarque que pour n=1 la probabilité de trouver la particule n’est zéro qu’aux bords du puits.

Pour n>1, on a aussi des points a l'intérieur du puits ou la particule ne peut pas se trouver! Un tel
comportement est typigue du comportement ondulatoire et n’a pas d’analogue en physique classique.

On appelle n le «xnombre quantique». Il caractérise les différents états possibles de la particule.



La particule dans un puits de potentiel infini

A partir de la condition sur la longueur d’onde, on peut déduire une
condition sur I'impulsion, qui est aussi quantifiée

-+ Ey = 16k,
h h nh
p = —-———--—= —
A 2L/n 2L
3 Es = 9E,
De la quantification de I'impulsion on peut déduire celle de I'énergie 5
oY,
] 2 E, =4E
p% h2n2 ~ ) 1
E,=—=—— n=1,2,3,... = I
2m  8ml? S —— w— i

L'énergie d’une particule confinée dans l’'espace est donc quantifiée!

'état de plus basse énergie, avec n=1, s'appelle en Physique Quantique «état fondamental» («ground state» en
anglais). Pour une particule confinée, son énergie est E;>0. En Physique Quantique, contrairement a la physique
classique, une particule confinée n’est jamais au repos!

On a maintenant une base pour expliquer la quantification de I'énergie. Remarquez que les valeurs discréetes
n‘ont pas toutes le méme espacement. C’est le cas en général. Le seul systeme avec énergies également
espacées est l'oscillateur harmonigue comme on le verra plus loin.



L'équation de Schrddinger

’équation de Schrédinger est la loi physique qui décrit la fonction d’onde (). Elle a été développée par
Erwin Schrodinger en 1926.

L'équation de Schrodinger est un postulat de la théorie. Cela veut dire qu’elle ne peut pas étre déduite de
principes plus fondamentaux.

Pour une particule de masse m soumise a un potentiel externe U(x), I'équation de Schrédinger est

R d2(x)

29m dx?

+U(z)(r) = Ey()

Ou E est I'énergie totale de la particule (cinétique plus potentielle), et A = h /2.

Pour bien comprendre la signification de cette équation, il faut se poser plusieurs questions.



L'équation de Schrddinger

A2 d2(x)

2m dz?

+U(x)(r) = Ey(x)

Que décrit-elle  exactement [I'équation de
Schrodinger?

LU'équation de Schrodinger ci-dessus est dite
équation de Schrodinger indépendante du temps.
Elle décrit les états stationnaires possibles du
systeme.

Les états stationnaires sont les états du systeme
avec une valeur bien déterminée de I'énergie.

Pour ces états, la forme de la fonction d’'onde reste
la méme dans le temps, d’ou leur nom.

Pour comprendre, on peut faire I'analogie avec les
modes résonnants d’un systeme harmonique, qui
ont une valeur bien déterminée de la fréquence.



L'équation de Schrddinger

Un systeme peut se trouver dans un état non stationnaire.
Un état non stationnaire est caractérisé par une incertitude dans la valeur de I’énergie totale.
La forme de I’état non stationnaire change dans le temps.

Ce changement n’est pas directement décrit par I'équation de Schrodinger indépendante du temps, vue avant.
Il est décrit par I'équation de Schrodinger dépendante du temps, qu’on énoncera prochainement.

Pour notre analogie avec un systeme harmonique, il faut penser par exemple a une corde sollicitée par une
déformation locale, qui va se propager comme un paquet d’onde.




L'équation de Schrddinger

1 )
2m  dx?

+U(z)(r) = Ey()

Dans I'équation de Schrodinger, I'énergie E est un parametre a déterminer. Les plusieurs solutions possibles
de I'équation auront en général des différentes valeurs de E (mais il est possible que plusieurs solutions aient
la méme valeur de E).

Une solution ¥() avec une valeur de I’énergie E, est dite «état propre». La valeur de E est dite «valeur
propre» de I'énergie.



L'équation de Schrddinger: la particule libre

Etudions un cas simple: la particule libre. Dans ce cas on n’a pas de forces externes et U(x)=0.
12 d%y ()
2m  dx?

C’est une équation différentielle de deuxieme ordre a coefficients constants. Sa solution est

¢($) :Aeik)x _I_Be—z'kx o /27;;E

C’est bien I'onde plaine que nous savons décrire la particule libre de |la théorie de de Broglie. En particulier, la
théorie de de Broglie nous dit que

= Lip(x)

_27r_p
e AN h

Si on remplace dans la condition pour k obtenue de I'équation, on obtient

thQ N p2

E =
2m 2m

qui est bien I'expression pour I'énergie cinétique de la particule libre.

On voit que dans le cas de la particule libre toutes les valeurs possibles de E correspondent a un état
possible du systeme.



L'équation de Schrddinger: Conditions au bord

W d*y(z)

29m dx?

+U(z)(r) = Ey()

Plus en général, en présence d’un potentiel U(x) externe, pas toutes les valeurs de E correspondent a des
états possibles pour le systeme.

L'équation, ensemble avec le fait que la fonction d’'onde doit étre normée, impose des conditions au bord.
En particulier, on demande que la fonction d’onde soit continue partout dans I'espace.

Pour le voir, on remarque que I'équation établit une relation de proportionnalité entre la fonction d’onde et
sa deuxieme dérivée. Or, si la fonction est discontinue, sa deuxieme dérivée le sera aussi. Mais une fonction
dont la deuxieme dérivée est discontinue, ne peut pas en général remplir le critere de norme finie. Il faut
donc nécessairement que la fonction d’'onde soit continue.

Un argument similaire nous permet de conclure que la premiére dérivée de la fonction d’onde doit aussi
étre continue.

Dans un grand nombre de systemes physiques, ces deux conditions ne peuvent étre remplies que par des
solutions avec des valeurs discréte de I’énergie propre E.



["'équation de Schrodinger: Puits infini

1 )
2m  dx?

+U(z)(r) = Ey()

Revenons au systeme d’un puits de potentiel avec barrieres impénétrables

0 O<xz<L
U(x){ +oo x<0ouzxz>1L

Partout ou le potentiel est infini, il faut que la fonction d’onde soit zéro, autrement la deuxieme dérivée va
étre infinie. Donc il faut

Y(z) =0 r<0etxz>L



["'équation de Schrodinger: Puits infini

P2 d(x) :
—o 2 4 U(2)h(2) = Bu(a)

La continuité de la fonction d’onde impose que ¥ (x) = 0 aussi pour x=0 et x=L. Ceci impose deux conditions
sur les quantités A, B, et k, qui caractérisent la solution générale de I'équation différentielle.

w(aj) _ Aeik:m _I_Be—z'kaj

On aura B=-A et o
m
EL =4/ 73 L=nm n=1,2,3,...

Ceci n’est possible que pour des valeurs discretes de I'énergie. On obtient donc les valeurs propres et les
états propres suivants

E, = ( EE ) n? Yn(x) = Asin (@)

2m L2 L

Ce sont les états vus avant, mais nous les avons déduits directement de I'équation de Schrodinger.



L'équation de Schrodinger: Limpulsion

P a2 () :
—o 2 + U(2) () = Bu(a)

On voit apparaitre dans I'équation de Schrodinger I'énergie totale E et I'énergie potentielle U. On sait que la
relation E=K+U doit valoir, ou K est I'énergie cinétique.

On peut écrire I'équation comme H@b(gj) — Ew(aj) ou H est un «opérateur» qui agit sur la fonction
d’onde.

A R d?
Cette opérateur est dit «Hamiltonien» et il est exprimé comme JH — — + U(g;)

Intuitivement on pourrait s'attendre H=E. Pour cela il faut que la partie avec la dérivée soit égale a I'énergie

cinétique K: B h2 d2 B = p2
2m dx? 2m
L d
Ceci est possible sion pose D = —ih—
dx

En Physique Quantique, les quantités physiques sont décrites par des opérateurs agissant sur la fonction d’onde



Questions ouvertes

Quelle est la loi qui régit I'évolution dans le temps de la fonction d’'onde?

Comment on décrit les autres quantités physiques, telles que impulsion, moment cinétique, etc.? Et comment
la théorie décrit-elle le processus de mesure de ces quantités?

Comment on généralise la théorie au cas avec plusieurs particules en interaction?



