
Rappèl

L’interprétation orthodoxe de la Physique Quantique implique que le carré de la fonction d’onde exprime la
densité de probabilité par unité de volume, de trouver la particule à chaque endroit de l’espace.

Une mesure de la position de la particule sera donc caractérisée en général par une incertitude.

L’interprétation correcte de l’incertitude est la suivante: un système est préparé dans un état donné. On
mesure la position de la particule et on obtient une certaine valeur x1. On prépare un autre système dans le
même état . Une nouvelle mesure de la position donnera en une valeur x2 qui est en général différente
de x1.

Cette incertitude n’est pas due au manque de précision de l’expérimentateur ou de l’instrument de mesure.
Elle est une caractéristique intrinsèque de l’état du système selon les lois de la Physique Quantique.

Chaque état est caractérisé par sa propre distribution de probabilité et donc par sa propre incertitude.

En particulier, l’onde plaine de de Broglie et la fonction d’onde de type «delta» de Dirac, sont les deux cas
limite. Ils ont respectivement incertitude infinie et zéro.



Rappèl

La mesure de toute quantité physique, et pas seulement celle de la position, est caractérisée par une
incertitude.

En particulier, la mesure de l’impulsion (ou quantité de mouvement) est caractérisée par une incertitude

Le principe d’incertitude de Heisenberg affirme que, quoiqu’elle soit la fonction d’onde qui décrit l’état
de la particule, les deux incertitudes sur la position et sur l’impulsion doivent satisfaire l’inégalité

Quoiqu’il soit l’état de la particule, il est donc impossible de connaître sa position et son impulsion
simultanément avec précision arbitraire.

Le principe d’incertitude de Heisenberg est un cas spécial du principe de complémentarité de Bohr.



Cours 06
La particule dans un puits avec barrières impénétrables

L’équation de Schrödinger



La particule dans un puits de potentiel infini

On considère une particule confinée dans une région de
l’espace qui va de x=0 à x=L. On peut s’imaginer que ce
confinement est produit par deux barrières impénétrables. Ces
barrières sont décrites mathématiquement par un puits de
potentiel avec barrières de hauteur infinie.

Dans la région du puits la particule se comporte comme une
particule libre. Si c’était une particule classique, elle pourrait
avoir une vitesse arbitraire.

En physique quantique, le mouvement à l’intérieur du puits
serait donc décrit par l’onde de de Broglie

La phase f arbitraire permet d’exprimer la fct d’onde comme

On trouvera ce résultat par la suite en résolvant l’équation de
Schrödinger.



La particule dans un puits de potentiel infini

Comment choisi-t-on A et B? Si les barrières sont impénétrables, il faut que la probabilité de trouver la
particule à l’extérieur du puits soit zéro. La fonction d’onde doit donc être zéro pour x<0 et x>L.

La fonction d’onde en Physique Quantique doit être continue. C’est une propriété qui découle de l’équation
de Schrödinger qu’on verra par la suite. Il faut donc que la fonction d’onde s’annule aussi en x=0 et x=L. On
en déduit qu’il faut poser B=0. On a donc

Pour la même raison, la fonction d’onde doit s’annuler aussi en x=L. Ceci n’est possible que pour des valeurs
discrètes de la longueur d’onde de de Broglie l. La condition sur la longueur d’onde est

Les fonctions d’onde des différents états possibles sont donc (après avoir calculé la norme)



La particule dans un puits de potentiel infini

Dans la figure, pour chaque valeur de n la fonction est dessinée déplacée vers le haut, pour pouvoir les
distinguer. A droite on a la densité de probabilité correspondante.

On remarque que pour n=1 la probabilité de trouver la particule n’est zéro qu’aux bords du puits.

Pour n>1, on a aussi des points à l’intérieur du puits où la particule ne peut pas se trouver! Un tel
comportement est typique du comportement ondulatoire et n’a pas d’analogue en physique classique.

On appelle n le «nombre quantique». Il caractérise les différents états possibles de la particule.



La particule dans un puits de potentiel infini

A partir de la condition sur la longueur d’onde, on peut déduire une
condition sur l’impulsion, qui est aussi quantifiée

De la quantification de l’impulsion on peut déduire celle de l’énergie

L’énergie d’une particule confinée dans l’espace est donc quantifiée!

L’état de plus basse énergie, avec n=1, s’appelle en Physique Quantique «état fondamental» («ground state» en
anglais). Pour une particule confinée, son énergie est E1>0. En Physique Quantique, contrairement à la physique
classique, une particule confinée n’est jamais au repos!

On a maintenant une base pour expliquer la quantification de l’énergie. Remarquez que les valeurs discrètes
n’ont pas toutes le même espacement. C’est le cas en général. Le seul système avec énergies également
espacées est l’oscillateur harmonique comme on le verra plus loin.



L’équation de Schrödinger

L’équation de Schrödinger est la loi physique qui décrit la fonction d’onde . Elle a été développée par
Erwin Schrödinger en 1926.

L’équation de Schrödinger est un postulat de la théorie. Cela veut dire qu’elle ne peut pas être déduite de
principes plus fondamentaux.

Pour une particule de masse m soumise à un potentiel externe , l’équation de Schrödinger est

Où E est l’énergie totale de la particule (cinétique plus potentielle), et .

Pour bien comprendre la signification de cette équation, il faut se poser plusieurs questions.



L’équation de Schrödinger

Que décrit-elle exactement l’équation de
Schrödinger?

L’équation de Schrödinger ci-dessus est dite
équation de Schrödinger indépendante du temps.
Elle décrit les états stationnaires possibles du
système.

Les états stationnaires sont les états du système
avec une valeur bien déterminée de l’énergie.

Pour ces états, la forme de la fonction d’onde reste
la même dans le temps, d’où leur nom.

Pour comprendre, on peut faire l’analogie avec les
modes résonnants d’un système harmonique, qui
ont une valeur bien déterminée de la fréquence.



L’équation de Schrödinger

Un système peut se trouver dans un état non stationnaire.

Un état non stationnaire est caractérisé par une incertitude dans la valeur de l’énergie totale.

La forme de l’état non stationnaire change dans le temps.

Ce changement n’est pas directement décrit par l’équation de Schrödinger indépendante du temps, vue avant.
Il est décrit par l’équation de Schrödinger dépendante du temps, qu’on énoncera prochainement.

Pour notre analogie avec un système harmonique, il faut penser par exemple à une corde sollicitée par une
déformation locale, qui va se propager comme un paquet d’onde.



L’équation de Schrödinger

Dans l’équation de Schrödinger, l’énergie E est un paramètre à déterminer. Les plusieurs solutions possibles
de l’équation auront en général des différentes valeurs de E (mais il est possible que plusieurs solutions aient
la même valeur de E).

Une solution avec une valeur de l’énergie E, est dite «état propre». La valeur de E est dite «valeur
propre» de l’énergie.



L’équation de Schrödinger: la particule libre

Etudions un cas simple: la particule libre. Dans ce cas on n’a pas de forces externes et U(x)=0.

C’est une équation différentielle de deuxième ordre à coefficients constants. Sa solution est

C’est bien l’onde plaine que nous savons décrire la particule libre de la théorie de de Broglie. En particulier, la
théorie de de Broglie nous dit que

Si on remplace dans la condition pour k obtenue de l’équation, on obtient

qui est bien l’expression pour l’énergie cinétique de la particule libre.

On voit que dans le cas de la particule libre toutes les valeurs possibles de E correspondent à un état
possible du système.



L’équation de Schrödinger: Conditions au bord

Plus en général, en présence d’un potentiel U(x) externe, pas toutes les valeurs de E correspondent à des
états possibles pour le système.

L’équation, ensemble avec le fait que la fonction d’onde doit être normée, impose des conditions au bord.

En particulier, on demande que la fonction d’onde soit continue partout dans l’espace.

Pour le voir, on remarque que l’équation établit une relation de proportionnalité entre la fonction d’onde et
sa deuxième dérivée. Or, si la fonction est discontinue, sa deuxième dérivée le sera aussi. Mais une fonction
dont la deuxième dérivée est discontinue, ne peut pas en général remplir le critère de norme finie. Il faut
donc nécessairement que la fonction d’onde soit continue.

Un argument similaire nous permet de conclure que la première dérivée de la fonction d’onde doit aussi
être continue.

Dans un grand nombre de systèmes physiques, ces deux conditions ne peuvent être remplies que par des
solutions avec des valeurs discrète de l’énergie propre E.



L’équation de Schrödinger: Puits infini

Revenons au système d’un puits de potentiel avec barrières impénétrables

Partout où le potentiel est infini, il faut que la fonction d’onde soit zéro, autrement la deuxième dérivée va
être infinie. Donc il faut



L’équation de Schrödinger: Puits infini

La continuité de la fonction d’onde impose que aussi pour x=0 et x=L. Ceci impose deux conditions
sur les quantités A, B, et k, qui caractérisent la solution générale de l’équation différentielle.

On aura B=-A et

Ceci n’est possible que pour des valeurs discrètes de l’énergie. On obtient donc les valeurs propres et les
états propres suivants

Ce sont les états vus avant, mais nous les avons déduits directement de l’équation de Schrödinger.



L’équation de Schrödinger: L’impulsion

On voit apparaître dans l’équation de Schrödinger l’énergie totale E et l’énergie potentielle U. On sait que la
relation E=K+U doit valoir, où K est l’énergie cinétique.

On peut écrire l’équation comme où est un «opérateur» qui agit sur la fonction
d’onde.

Cette opérateur est dit «Hamiltonien» et il est exprimé comme

Intuitivement on pourrait s’attendre H=E. Pour cela il faut que la partie avec la dérivée soit égale à l’énergie
cinétique K:

Ceci est possible si on pose

En Physique Quantique, les quantités physiques sont décrites par des opérateurs agissant sur la fonction d’onde



Questions ouvertes

Quelle est la loi qui régit l’évolution dans le temps de la fonction d’onde?

Comment on décrit les autres quantités physiques, telles que impulsion, moment cinétique, etc.? Et comment
la théorie décrit-elle le processus de mesure de ces quantités?

Comment on généralise la théorie au cas avec plusieurs particules en interaction?


